Sua avaliação sobre blog .

sexta-feira, 14 de março de 2014

Química inorgânica, Classificação dos compostos inorgânicos, Química de coordenação e etc.

Química inorgânica


A química inorgânica estuda todos os elementos da tabela periódica e alguns compostos de carbono. A química orgânica dedica-se especialmente ao estudo dos compostos de carbono.
Química inorgânica é o campo da química que estuda a estrutura, reatividade e preparação dos compostos inorgânicos e organometálicos. Este domínio abrange todos os compostos químicos, com exceção dos compostos orgânicos, que são temas de estudo da química orgânica. A distinção entre as duas disciplinas está longe de ser absoluta e há muita sobreposição, especialmente na disciplina química organometálica. A química inorgânica tem aplicações em todos os aspectos da indústria química, incluindo catáliseciência dos materiaispigmentossurfactantes,revestimentosmedicamentoscombustíveis e agricultura.

Classificação dos compostos inorgânicos


Uma dos conceitos para explicar a basicidade ou acidez de um composto é a Teoria de Lewis. Na figura é ilustrado a reação de protonação de uma molécula deamônia: o par de elétrons livre do átomo de nitrogênio é "doado" ao íon hidrogênio para formar o íon amônio, caracterizando deste modo a amônia como uma base de Lewis.
Os compostos inorgânicos são classificados em quatro grandes grupos: os sais, os óxidos, os ácidos e asbases. Os sais são constituídos de um cátion e um ânion unidos por uma ligação iônica, como por exemplo obrometo de sódio NaBr, que é constituído de um cátion Na+ e um ânion de brometo Br−. Os sais são caracterizados por um alto ponto de fusão e são maus condutores de eletricidade no estado sólido. Outras características importantes são a solubilidade em água e a facilidade de cristalização. Alguns sais (por exemplo NaCl) são muito solúveis em água e outros (por exemplo BaSO4) não o são.
Um óxido é um composto químico que contém pelo menos um átomo de oxigênio e um outro elemento químico em sua fórmula química. Óxidos de metais contêm tipicamente um ânion de oxigênio no estado de oxidação de -2. A maior parte da crosta terrestre é constituída de óxidos sólidos, resultado de elementos que são oxidados pelo oxigênio no ar ou dissolvido na água. A combustão de hidrocarbonetos produz os dois principais óxidos de carbono:monóxido de carbono e dióxido de carbono.
teoria de Brønsted-Lowry define como bases como aceitadores de íons de hidrogênio, enquanto a teoria de Lewis define bases como doadores de par de elétrons. A teoria mais antiga é de Arrhenius que define bases como espécies que liberam ânion hidróxido quando em solução e é estritamente aplicável aoscompostos alcalinos.
A definição para ácidos segue o raciocínio contrário da definição de base. A teoria de Brønsted-Lowry define como ácidos substâncias que doam íons hidrogênio, enquanto a teoria mais geral de Lewis define ácidos como aceitadores de par de elétrons. A teoria de Arrhenius define como ácidos espécies que liberam íons hidrogênio em solução aquosa.
Química de coordenação

pentacarbonilo de ferro: exemplo estrutural de um composto de coordenação contendo um metal de transição (ferro) e ligantes (monóxido de carbono).
Os compostos de coordenação tradicionais apresentam metais ligados a pares de elétrons que se encontram nos átomos dos grupos ligantes, tais como H2O, NH3, Cl- e CN-. Em compostos de coordenação modernos quase todos os compostos orgânicos e inorgânicos podem ser utilizados como ligantes. O metal é geralmente um metal dos grupos 3-13, assim como os trans-lantanídeos e trans-actinídeos. A estereoquímica dos complexos de coordenação pode ser muito rica, como sugerido por Alfred Werner após a separação de dois enantiômeros de [Co((OH)2Co(NH3)4)3]6+, uma manifestação precoce de que aquiralidade não é inerente aos compostos orgânicos. Um tema dentro deste tópico é a química supramolecular de coordenação.
Exemplos de compostos de coordenação: [Co(EDTA)][Co(NH3)6]3+TiCl4(THF)2.
Os principais elementos da tabela periódica estão nos grupos da 1, 2 e 13-18 (excluindo o hidrogênio), mas devido à sua reatividade, os elementos do grupo 3 (ScYLa) e do grupo 12 (ZnCd e Hg) são também geralmente incluídos entre os principais.
Principais compostos de grupo
Compostos do grupo principal são conhecidos desde os primórdios da química como o enxofre elementar e o fósforo branco. Experimentos com oxigênio, O2, realizados por Lavoisier e Priestley não só identificou um gás diatômico importante, mas abriu o caminho para descrever compostos e reações de acordo comrazões estequiométricas. A descoberta de uma síntese da amônia bastante prática usando catalisadores de ferro por Carl Bosch e Fritz Haber no início de 1900 impactou a humanidade profundamente, demonstrando a importância da síntese inorgânica. Típicos compostos do grupo principal são SiO2, SnCl4, e N2O. Muitos compostos do grupo principal pode também ser classificados como "organometálicos", uma vez que contêm grupos orgânicos, por exemplo, B(CH3)3). Os compostos do grupo principal também ocorrem na natureza, por exemplo, fosfato de DNA e, portanto, podem ser classificados como bioinorgânicos. Por outro lado, os compostos orgânicos que não estão ligados a hidrogênio são classificados como compostos inorgânicos, tais como os fulerenos e os óxidos de carbono.
Os compostos que contêm metais do grupo 4 a 11 são considerados compostos de metais de transição. Alguns compostos de um metal do grupo 3 ou 12 são, por vezes, também incorporadas neste grupo, mas também muitas vezes classificados como compostos do grupo principal. Compostos de metais de transição mostram uma química de coordenação rica, variando de tetraedrosde titânio (por exemplo, TiCl4) à geometria quadrado planar de alguns complexos de níquel e complexos de coordenação octaédrica para compostos de cobalto. Uma gama de metais de transição podem ser encontrados em compostos biologicamente importantes, tais como o ferro na hemoglobina.
Exemplos de composto contendo metais de transição: pentacarbonilo de ferro e cisplatina.

Química analítica

Química analítica é um ramo da química que visa estudar a composição química de um material ou de uma amostra, usando métodos laboratoriais. É dividida em química analítica quantitativaquímica analítica qualitativa. A busca por métodos de análise mais rápidos, seletivos e sensíveis também é um dos objetivos essenciais da química analítica. Na prática, é difícil encontrar um método de análise que combinem essas três características e, em geral, qualquer uma delas pode ser suprimida em benefício de outra.

Química analítica quantitativa


Em destaque, um processo detitulação com base em uma neutralização: as gotas do titulante que está na bureta caem na solução doanalito contida no Balão de Erlenmeyer. Um indicador ácido-base presente nesta última solução mudará de cor de forma permanente, ao atingir o ponto final da titulação.
Em química, análise quantitativa é a determinação da abundância relativa ou absoluta (muitas vezes expressa como uma concentração) de uma, várias ou todas as substâncias presentes em uma amostra. Vários métodos foram desenvolvidos para este tipo de análise, dentre elas a análise gravimétrica e a análise volumétrica. A análise gravimétrica descreve um conjunto de métodos para a determinação da quantidade de um analito com base na massa sólida. Um exemplo simples é a determinação da quantidade de sólidos em suspensão em uma amostra de água: um volume conhecido de água é filtradoe os sólidos recolhidos no filtro são então pesados. A análise gravimétrica fornece dados precisos sobre a composição de uma amostra e seu tempo de execução pode ser elevado. Já a análise volumétrica, por outro lado, é rápida e os resultados são na maioria dos casos satisfatórios: estas análises consistem basicamente em processos de titulação, também conhecido como titulometria, onde são monitorados os volumes usados nestas etapas. Um reagente, chamado o titulante é preparado como uma solução padrão. Uma concentração conhecida e volume de titulante reage com uma solução de analito ou de titulante , para determinar a concentração. Análise volumétrica pode ser simplesmente uma titulação com base numa reação de neutralização, mas também pode ser uma precipitação ou uma reação de formação de um complexo, bem como a titulação com base em uma reação redox. No entanto, cada método de análise quantitativa tem uma especificação geral, em neutralização, por exemplo, a reação que ocorre é entre um ácido e uma base, a qual produz um sal e água, daí o nome de neutralização. Nas reações de precipitação, a solução padrão é na maioria dos casos de nitrato de prata, que é usada para reagir com os íons presentes na amostra no intuito de formar um precipitado insolúvel. Métodos de precipitação são muitas vezes chamado simplesmente de argentometria. Nos dois outros métodos, a situação é a mesma. A titulação de formação de um complexo é uma reação que ocorre entre os íons de um metal e uma solução padrão que contem na maioria dos casos, o EDTA (ácido etilenodiaminotetra-acético). Em uma titulação redox, a reação é ocorre entre um agente oxidante e um agente redutor.

Química analítica qualitativa


Teste da chama: sais contendo o metallítio apresentam cor avermelhada quando em contato com chama.
Enquanto a análise quantitativa se preocupa em determinar a quantidade de determinada(s) substância(s) em uma amostra, a análise qualitativa usa diversas metodologias clássicas que visam especificar a composição elementar de compostos inorgânicos. É focada principalmente em detectar íons em uma solução aquosa: então para que materiais sólidos sejam analisados, estes devem preferencialmente serem convertidos em soluções, geralmente por um processo denominado digestão. A solução é então tratada com diversos reagentes para testar a reações características de determinados íons, que podem causar mudança da cor da solução em análise, formação de precipitado ou outras mudanças visíveis.54 De acordo com as suas propriedades, os cátions são classificados em seis grupos. Cada grupo possui um reagente de comum que pode ser utilizado para separá-los a partir da solução. Para se obter resultados significativos, a separação segue uma sequência especifa chamada marcha analítica. Outra importante técnica usada para identificar cátios metálicos é o teste da chama: este procedimento se baseia no espectro de emissão característico para cada elemento, quando em contato com chama. O teste envolve a introdução da amostra em chama e a observação da cor resultante. As amostras geralmente são manuseadas com um fio de platina previamente limpo com ácido clorídrico para retirar resíduos de analitos anteriores.O teste de chama é baseado no fato de que quando uma certa quantidade de energia é fornecida a um determinado elemento químico (no caso da chama, energia em forma de calor), alguns elétrons da última camada de valência absorvem esta energia passando para um nível de energia mais elevado, produzindo o que chamamos de estado excitado. Quando um desses elétrons excitados retorna ao estado fundamental, ele libera a energia recebida anteriormente em forma de radiação. Cada elemento libera a radiação em um comprimento de onda característico, pois a quantidade de energia necessária para excitar um elétron é única para cada elemento. A radiação liberada por alguns elementos possui comprimento de onda na faixa do espectro visível, ou seja, o olho humano é capaz de enxergá-los através de cores. Assim, é possível identificar a presença de certos elementos devido à cor característica que eles emitem quando aquecidos numa chama.

Físico-química

Físico-química é o estudo das propriedades físicas e químicas da matéria, incluíndo fenômenos macroscópicos, atômicos e subatômicos, sob a ótica das leis e conceitos dafísica. A físico-química aplica os princípios, práticas e conceitos da física como movimentoenergiaforçatempotermodinâmicamecânica quânticamecânica estatísticadinâmica para explicar fenômenos químicos.

Disciplinas da físico-química

A físico-química pode ser subdividada em diversas disciplinas. Dentre estas, podem ser citadas a química quântica, a termodinâmica química, a cinética química, a mecânica estatística e aeletroquímica.

termodinâmica química estuda as causas e os efeitos de mudanças detemperaturapressão e volume em sistemas químicos. Em destaque o derretimento do gelo - um exemplo de aumento de entropia.
A química quântica é um ramo da físico-química cujo foco principal é a aplicação dos conceitos da mecânica quântica a modelos físicos e experimentais de sistemas químicos. Uma das ferramentas mais usadas nestes estudos é a espectroscopia, por meio do qual a informação sobre a quantização de energia em escala molecular pode ser obtida. Os métodos espectroscópicos mais comuns são a espectroscopia de infravermelho (IR) e de ressonância magnética nuclear (RMN). Os estudos em química quântica são bastante teóricos e os trabalhos possuem grande interface com a química computacional, visando calcular as previsões da teoria quântica às espécies poliatômicas. Estes cálculos são realizados em computadores. Com estes meios, os químicos quânticos investigam aspectos envolvidos em reações química como o estado fundamental e excitado de átomos em moléculas e o estado de transição que ocorre durante as reações químicas. Os objetivos principais de química quântica incluem o aumento da exatidão dos resultados para pequenos sistemas moleculares e o processamento de moléculas de maiores dimensões, o qual é limitado por um motivo: o tempo de cálculo aumenta quanto maior for o número de átomos de uma molécula.
Outro conjunto de questões importantes giram em torno da espontaneidade das reações químicas e e quais as propriedades de uma mistura de compostos químicos. Estes aspectos são estudados pela termodinâmica química, que prevê a possibilidade de uma reação prosseguir, a quantidade de energia que pode ser convertida em trabalho e o estudo de propriedades tais como o coeficiente de dilatação térmica, a variação de taxa de entropia de um gás ou de um líquido.A termodinâmica clássica está mais preocupada com os sistemas em equilíbrio e as mudanças reversíveis.
A ideia fundamental da cinética química é a existência de um estado de transição de energia elevada quando reagentes são convertidos em produtos, ou seja uma barreira energética. De um modo geral, quanto maior for esta barreira energética, mais lenta será a reação. A segunda idéia fundamental é de que a maioria das reações químicas ocorrem como uma sequência de reações elementares, cada uma com seu próprio estado transição. As questões principais da cinética química incluem como a velocidade de uma reação depende da temperatura e das concentrações dos reagentes e de catalisadores na mistura reacional, bem como a forma como os catalisadores e condições de reação podem ser manipuladas para otimizar a taxa de reação.

Um dos alvos de estudo daeletroquímica, as pilhas são dispositivos que utilizam reações de óxido-redução para geração de energia elétrica.
A medida de quão rápida uma reação pode ocorrer pode ser especificada com apenas poucas amostragens da concentrações e pelo monitoramento da temperatura, ao invés de medir todas as posições e velocidades de cada molécula em uma mistura. Este é um caso especial de um outro conceito fundamental em físico-química: a mecânica estatística.58 A mecânica estatística estuda o comportamento de sistemas com elevado número de entidades constituintes a partir do comportamento destas entidades. Os constituintes podem ser átomos, moléculas, íons, entre outros.
A eletroquímica é um ramo da química que estuda reações químicas que ocorrem em uma solução envolvendo um eletrodo (um metal ou um semicondutor) e um condutor iônico (em geral uma solução eletrólítica), envolvendo trocas de elétrons entre o eletrodo e o eletrólito. Este campo científico abrange todos os processos químicos que envolvam transferência de elétrons entre substâncias, logo, a transformação de energia química em energia elétrica. Quando tal processo ocorre, produzindo transferência de elétrons, produzindo espontaneamente corrente elétrica quando ligado a um circuito elétrico, ou produzindo diferença de potencial entre dois pólos, é chamado de pilha ou bateria (que muitas vezes é formada de diversas células). Quando tal processo é proporcionado, induzido, pela ação de uma corrente elétrica de uma fonte externa, este processo é denominado de eletrólise.
Aluno: Erison Cavalcante

Um comentário: